Korean Clinical Psychology Association

Current Issue

Korean Journal of Clinical Psychology - Vol. 39 , No. 4

[ Original Article ]
Korean Journal of Clinical Psychology - Vol. 39 , No. 4 , pp.309-324
ISSN: 2733-4538 (Online)
publication date 30 Nov 2020
Received 14 Sep 2020 Revised 23 Oct 2020 Accepted 26 Oct 2020
DOI: https://doi.org/10.15842/kjcp.2020.39.4.006

Post–COVID-19 시대의 새로운 정신건강서비스: 자폐범주성장애에의 적용 현황
정경미 ; 정은선
연세대학교 심리학과

New Mental Health Services in the Post–COVID-19 Era: Application of Technology-Based Approach to Autism Spectrum Disorders
Kyong-Mee Chung ; Chung, Eunsun
Department of Psychology, Yonsei University, Seoul, Korea
Correspondence to : Eunsun Chung, Department of Psychology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea; E-mail: eun930320@gmail.com

© 2020 Korean Clinical Psychology Association


4차 산업혁명으로 간주되는 정보통신기술의 발전은 단기간에 모든 분야에 걸쳐 큰 변화를 초래하였다. COVID-19로 인한 대면활동의 제한은 임상심리학의 기술기반접근에 대한 필요성과 수요를 급격히 증대시킴과 동시에 요구도에 비해 턱없이 부족한 준비상황에 대한 현실을 직면하게 하였다. 기술기반 평가와 치료는 더 이상 선택이 아니며, 이미 적극적인 개발과 시도가 활발하다. 평가 측면에서 가장 두드러진 접근은 디지털 표현형으로, 모바일 도구를 이용한 다양한 측면의 대규모 자료 수집과 머신러닝에 근거한 분석기법에 기반하여 정신건강에 대한 평가, 진단 및 예측이 가능해지고 있다. 치료 측면에서 디지털 치료제는 이미 상용화가 활발하며 특히 최근에는 효과적인 의료기법으로 인정받기 시작했다. 본 연구에서는 임상심리학 연구 영역에서 기술기반연구가 상대적으로 활성화된 자폐성장애의 디지털 표현형과 치료제를 고찰하면서 Post–COVID-19 시대에 임상심리학의 위치를 재조명하였다. 고찰 결과, 디지털 표현형 관련 연구는 극히 드물어 방향성에 대한 고민이 필요하지만, 디지털 치료제는 효과성이 측정되고 있을 뿐 아니라 새로운 치료서비스로서의 가능성을 확인할 수 있었다. 급격하게 변화하는 사회와 기술발달 속도를 감안할 때 변화는 더 이상 우리의 선택이 아니며, 기술기반 평가와 치료라는 새로운 프레임의 전환에 대한 준비가 필요하다.


Social distancing as a measure to stop the spread of COVID-19 has drastically increased the need for technology-based mental health services. However, resources for the psychological assessment and treatment of the public are extremely limited. Over the past two decades, advances in information and communication technology (ICT) have facilitated technologybased- mental health services, which are deemed the most prominent alternative to traditional face-to-face service delivery amid the pandemic. Both digital phenotyping and digital therapeutics have recently been introduced and actively investigated. In this study, existing research in digital phenotyping and digital therapeutics for autism spectrum disorder was reviewed as a sample to clarify the status of its field applications. Although the development of digital phenotyping is in its early stages, digital therapeutics have been actively and successfully implemented in the treatment field. Given the increasing need for mental health services after the COVID-19 outbreak, change is no longer optional. Thus, preparation for a new technology- based assessment and treatment framework is necessary.

Keywords: Information and Communication Technology (ICT), digital phenotyping, digital therapeutics, Autism Spectrum Disorder (ASD), Post–COVID-19
키워드: 정보통신기술(ICT), 디지털 표현형, 디지털 치료제, 자폐 스펙트럼 장애(ASD), Post–COVID-19


This research was supported by a grant from the ICT Industry & Technology Development Project through the Institute for Information & communication Technology Planning & evaluation (IITP), funded by the National Research Foundation of Korea (Grant number: 2020-0-01965).

Author contributions statement

KMC, professor at Yonsei University, served as principal investigator of the research and supervised the research process. ESC, graduate student at Yonsei University, collected and analyzed data, and led manuscript preparation. Both authors wrote the manuscript, provided critical feedback, participated in revision of the manuscript, and approved the final submission.

1. Akili. (2020, June 15). Akili Announces FDA Clearance of EndeavorRxTM for Children with ADHD, the First Prescription Treatment Delivered Through a Video Game. Akili. Retrieved from https://www.akiliinteractive.com/news-collection/akili-announces-endeavortm-attention-treatment-is-now-available-for-childrenwith-attention-deficit-hyperactivity-disorder-adhd-al3pw.
2. Alabdulakareem, E., & Jamjoom, M. (2020). Computer-assisted learning for improving ADHD individuals’ executive functions through gamified interventions: A review. Entertainment Computing, 33, 100341.
3. American Psychiatric Association. (2013), Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed. Washington, DC: American Psychiatric Publication.
4. Anzulewicz, A., Sobota, K., & Delafield-Butt, J. T. (2016). Toward the autism motor signature: Gesture patterns during smart tablet gameplay identify children with autism. Scientific Reports, 6, 1-13.
5. Ardalan, A., Assadi, A. H., Surgent, O. J., & Travers, B. G. (2019). Whole-body movement during videogame play distinguishes youth with Autism from youth with typical development. Scientific Reports, 9, 1-11.
6. Asif, M., Martiniano, H. F., Marques, A. R., Santos, J. X., Vilela, J., Rasga, C., . . . Vicente, A. M. (2020). Identification of biological mechanisms underlying a multidimensional ASD phenotype using machine learning. Translational Psychiatry, 10, 1-12.
7. Bai, J. H. (2020. 7. 7). 코로나19 시대의 우울... ‘마음 거리두기’로 인한 병의 예방은? Mindpost. Retrieved from http://www.mindpost.or.kr/news/articleView.html?idxno=3981.
8. Barnett, I., Torous, J., Staples, P., Sandoval, L., Keshavan, M., & Onnela, J. P. (2018). Relapse prediction in schizophrenia through digital phenotyping: A pilot study. Neuropsychopharmacology, 43, 1660-1666.
9. Barrigon, M. L., Courtet, P., Oquendo, M., & Baca-Garcia, E. (2019). Precision medicine and suicide: An opportunity for digital health. Current Psychiatry Reports, 21, 1-8.
10. Barton, E. E., Pustejovsky, J. E., Maggin, D. M., & Reichow, B. (2017). Technology-aided instruction and intervention for students with ASD: A meta-analysis using novel methods of estimating effect sizes for single-case research. Remedial and Special Education, 38, 371-386.
11. Beiwinkel, T., Kindermann, S., Maier, A., Kerl, C., Moock, J., Barbian, G., & Rössler, W. (2016). Using smartphones to monitor bipolar disorder symptoms: A pilot study. JMIR Mental Health, 3, e2.
12. Bernard-Opitz, V., Sriram, N., & Nakhoda-Sapuan, S. (2001). Enhancing social problem solving in children with autism and normal children through computer-assisted instruction. Journal of Autism and Developmental Disorders, 31, 377-384.
13. Biotech Policy Research Center (2019). 디지털 치료제(Digital Therapeutics) 개발 동향. Retrieved from https://www.bioin.or.kr/board.do?cmd=view&bid=issue&num=291399.
14. Boukhechba, M., Huang, Y., Chow, P., Fua, K., Teachman, B. A., & Barnes, L. E. (2017). Monitoring social anxiety from mobility and communication patterns. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers (pp. 749-753).
15. Campellone, T. R., Smayda, K. E., & Maricich, Y. A. (2019). Agile development of a prescription digital therapeutic for patients with schizophrenia. Presented at the annual American Psychiatric Association. San Francisco, CA.
16. Cho, C. H., Lee, T., Kim, M. G., In, H. P., Kim, L., & Lee, H. J. (2019). Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: Prospective observational cohort study. Journal of Medical Internet Research, 21, e11029.
17. Choi, Y. S. (2015, October). 측정하고 통합하고 해석하고. 대변혁 부른 데이터, 인공지능으로 간다. Dong-A Business Review. Retrieved from
18. Choi, I. S. (2020. 4. 12). 특별기고: 음압병실 이해와 시설 기준. Kharn. Retrieved from https://www.kharn.kr/news/article.html?no=12426.
19. Choi, M. J., Kim, H., Nah, H. W., & Kang, D. W. (2019). Digital therapeutics: Emerging new therapy for neurologic deficits after stroke. Journal of Stroke, 21, 242-258.
20. Christensen, D. R., Landes, R. D., Jackson, L, Marsch, L. A., Mancino, M. J., Chopra, M. P., & Bickel, W. K., (2014). Adding an Internet- delivered treatment to an efficacious treatment package for opioid dependence. Journal of Consulting and Clinical Psychology, 82, 964-972.
21. Crane, L., Goddard, L., & Pring, L. (2009). Sensory processing in adults with autism spectrum disorders. Autism, 13, 215-228.
22. Cuthbert, B. N. (2014). The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry, 13, 28-35.
23. Dawson, G., Campbell, K., Hashemi, J., Lippmann, S. J., Smith, V., Carpenter, K., . . . Sapiro, G. (2018). Atypical postural control can be detected via computer vision analysis in toddlers with autism spectrum disorder. Scientific Reports, 8, 1-7.
24. Dawson, G., & Sapiro, G. (2019). Potential for digital behavioral measurement tools to transform the detection and diagnosis of autism spectrum disorder. JAMA Pediatrics, 173, 305-306.
25. Dawood, E., & Habib, F. (2018). Comparison of depression and anxiety between housewife and employed pregnant women. International Journal of Nursing, 5, 23-31.
26. de Joode, E. A., van Boxtel, M. P., Verhey, F. R., & van Heugten, C. M. (2012). Use of assistive technology in cognitive rehabilitation: Exploratory studies of the opinions and expectations of healthcare professionals and potential users. Brain Injury, 26, 1257-1266.
27. Deloitte. (2020). What will be the impact of the Covid-19 pandemic on healthcare systems? Retrieved from https://www2.deloitte.com/fr/fr/pages/covid-insights/articles/impact-covid19-healthcare-systems.html.
28. Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011, September). From game design elements to gamefulness: Defining gamification. In Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments (pp. 9-15).
29. DeVault, D., Artstein, R., Benn, G., Dey, T., Fast, E., Gainer, A., . . . Lucas, G. (2014, May). SimSensei Kiosk: A virtual human interviewer for healthcare decision support. In Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems (pp. 1061-1068).
30. Didehbani, N., Allen, T., Kandalaft, M., Krawczyk, D., & Chapman, S. (2016). Virtual reality social cognition training for children with high functioning autism. Computers in Human Behavior, 62, 703-711.
31. Faurholt‐Jepsen, M., Vinberg, M., Frost, M., Debel, S., Margrethe Christensen, E., Bardram, J. E., & Kessing, L. V. (2016). Behavioral activities collected through smartphones and the association with illness activity in bipolar disorder. International Journal of Methods in Psychiatric Research, 25, 309-323.
32. FDA. (2020, April). Enforcement Policy for Digital Health Devices For Treating Psychiatric Disorders During the Coronavirus Disease 2019 (COVID-19) Public Health Emergency Guidance for Industry and Food and Drug Administration Staff. FDA. Retrieved from https://www.fda.gov/media/136939/download.
33. FDA News. (2018, December 10). FDA clears mobile medical app to help those with opioid use disorder stay in recovery programs. FDA News. Retrieved from https://www.fda.gov/news-events/press-announcements/fda-clears-mobile-medical-app-helpthose-opioid-use-disorder-stay-recovery-programs.
34. FDA News. (2020, June 15). FDA Permits Marketing of First Game- Based Digital Therapeutic to Improve Attention Function in Children with ADHD. FDA News. Retrieved from https://www.fda.gov/news-events/press-announcements/fda-permits-marketingfirst-game-based-digital-therapeutic-improve-attention-function-children-adhd.
35. Firth, J., Torous, J., Nicholas, J., Carney, R., Pratap, A., Rosenbaum, S., & Sarris, J. (2017). The efficacy of smartphone‐based mental health interventions for depressive symptoms: A meta‐analysis of randomized controlled trials. World Psychiatry, 16, 287-298.
36. Firth, J., Torous, J., Nicholas, J., Carney, R., Rosenbaum, S., & Sarris, J. (2017). Can smartphone mental health interventions reduce symptoms of anxiety? A meta-analysis of randomized controlled trials. Journal of Affective Disorders, 218, 15-22.
37. Fisher, C. E., & Appelbaum, P. S. (2017). Beyond Googling: The ethics of using patients’ electronic footprints in psychiatric practice. Harvard Review of Psychiatry, 25, 170-179.
38. Ghandeharioun, A., Fedor, S., Sangermano, L., Ionescu, D., Alpert, J., Dale, C., . . . Picard, R. (2017, October). Objective assessment of depressive symptoms with machine learning and wearable sensors data. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII) (pp. 325-332).
39. Gliddon, E., Barnes, S. J., Murray, G., & Michalak, E. E. (2017). Online and mobile technologies for self-management in bipolar disorder: A systematic review. Psychiatric Rehabilitation Journal, 40, 309-319.
40. Global Newswire. (2020, February 25). Digital Therapeutics Market to Reach $9.64 Bn, Globally, by 2026: Allied Market Research. Global Newswire. Retrieved from https://www.globenewswire.com/news-release/2020/02/25/1990165/0/en/Digital-Therapeutics-Market-to-Reach-9-64-Bn-Globally-by-2026-Allied-Market-Research.html.
41. Golan, O., LaCava, P. G., & Baron-Cohen, S. (2007). Assistive technology as an aid in reducing social impairment in autism. In R. L. Gabriels & D. E. Hill (Eds.), Growing up with autism: Working with school-age children and adolescents (pp. 124-142). New York, NY: Guilford Press.
42. Grossard, C., Dapogny, A., Cohen, D., Bernheim, S., Juillet, E., Hamel, F., Hun, S., Bourgeois, J., Pellerin, H., Serret, S., Bailly, K., & Chaby, L. (2020). Children with autism spectrum disorder produce more ambiguous and less socially meaningful facial expressions: An experimental study using random forest classifiers. Molecular Autism, 11, 1-14.
43. Grynszpan, O., Weiss, P. L. T., Perez-Diaz, F., & Gal, E. (2014). Innovative technology-based interventions for autism spectrum disorders: A meta-analysis. Autism, 18, 346-361.
44. Hswen, Y., Gopaluni, A., Brownstein, J. S., & Hawkins, J. B. (2019). Using Twitter to detect psychological characteristics of self-identified persons with autism spectrum disorder: A feasibility study. JMIR mHealth and uHealth, 7, e12264.
45. Hswen, Y., Naslund, J. A., Brownstein, J. S., & Hawkins, J. B. (2018). Online communication about depression and anxiety among twitter users with schizophrenia: Preliminary findings to inform a digital phenotype using social media. Psychiatric Quarterly, 89, 569-580.
46. Hrynowski, Z. (2020, June 17). 66% of Americans Remain Worried About Exposure to COVID-19. Gallup. Retrieved from https://news.gallup.com/poll/312680/americans-remain-worried-exposure-covid.aspx.
47. Huckvale, K., Venkatesh, S., & Christensen, H. (2019). Toward clinical digital phenotyping: A timely opportunity to consider purpose, quality, and safety. NPJ Digital Medicine, 2, 1-11.
48. Insel, T. R. (2014). The NIMH research domain criteria (RDoC) project: Precision medicine for psychiatry. American Journal of Psychiatry, 171, 395-397.
49. Insel, T. R. (2017). Digital phenotyping: Technology for a new science of behavior. Journal of the American Medical Association, 318, 1215-1216.
50. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748-751.
51. Ip, H. H., Wong, S. W., Chan, D. F., Byrne, J., Li, C., Yuan, V. S., Lau, K., & Wong, J. Y. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. Computers and Education, 117, 1-15.
52. Jain, S. H., Powers, B. W., Hawkins, J. B., & Brownstein, J. S. (2015). The digital phenotype. Nature Biotechnology, 33, 462-463.
53. Jung, E. H. (2020). “시무룩하게 달력만 봐” 코로나에 갈 곳 없는 발달장애 아이들. Korea JoongAng Daily. Retrieved from https://news.joins.com/article/23719344.
54. Kim, M. K., & Ju, S. R. (2007). A study on physical environment of child care centers for children with disability. Journal of the Korean Housing Association, 18, 121-131.
55. KISTEP. (2020. 4. 29). 미래예측 브리프 1호_포스트 코로나 미래 전망 및 유망기술. KISTEP. Retrieved from https://www.kistep. re.kr/c3/sub2_2.jsp?brdType=R&bbIdx=13771.
56. Koo, B. H., & Bai, D. S. (2006). Diagnostic availability of a computerized neurocognitive function test for children with ADHD. Journal of Korean Society of Biological Therapies in Psychiatry, 12, 39-49.
57. Kornstein, S. G., Schatzberg, A. F., Thase, M. E., Yonkers, K. A., McCullough, J. P., Keitner, G. I., . . . Keller, M. B. (2000). Gender differences in treatment response to sertraline versus imipramine in chronic depression. American Journal of Psychiatry, 157, 1445- 1452.
58. Lee, I. B. (2020). 심리방역, 용어는 어렵지만 별 거 아닙니다. Medical Times. Retrieved from https://www.medicaltimes.com/Users/News/NewsView.html?ID=1133472.
59. Lim, S. M. (2020). 코로나19 극복 ‘발달장애아동 및 가족 행동지 침’ 발표. Daily Medi. Retrieved from http://www.dailymedi.com/detail.php?number=855835.
60. Lovaas, O. I. (1987). Behavioral treatment and normal educational and intellectual functioning in young autistic children. Journal of Consulting and Clinical Psychology, 55, 3-9.
61. Lovett, L. (2018, December 10). Pear’s digital therapeutic reSET-O FDA cleared to treat opioid use disorder. Mobile Health News. Retrieved from https://www.mobihealthnews.com/content/pearsdigital-therapeutic-reset-o-fdacleared-treat-opioid-usedisorder?fbclid=IwAR1Clq9GkZIa7hgEjbXkh67dFDE9pl3ZLrtEhQIChflrZzM3tthVOSF2t64.
62. Martín-Gutiérrez, J., Mora, C. E., Añorbe-Díaz, B., & González-Marrero, A. (2017). Virtual technologies trends in education. EURASIA Journal of Mathematics, Science and Technology Education, 13, 469-486.
63. McDonald, A. D., Sasangohar, F., Jatav, A., & Rao, A. H. (2019). Continuous monitoring and detection of post-traumatic stress disorder (PTSD) triggers among veterans: A supervised machine learning approach. IISE Transactions on Healthcare Systems Engineering, 9, 201-211.
64. Mehrotra, A., & Musolesi, M. (2017, June). Designing effective movement digital biomarkers for unobtrusive emotional state mobile monitoring. In Proceedings of the 1st Workshop on Digital Biomarkers (pp. 3-8).
65. Mesa-Gresa, P., Gil-Gómez, H., Lozano-Quilis, J. A., & Gil-Gómez, J. A. (2018). Effectiveness of virtual reality for children and adolescents with autism spectrum disorder: An evidence-based systematic review. Sensors, 18, 2486-2497.
66. Ministry of Health and Welfare. (2019). 2020년도 보건복지부 연 구개발(R&D) 예산 5,278억 원 지원, 투자 방향 담은 통합시행 계획 확정. Ministry of Health and Welfare. Retrieved from http://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&page=1&CONT_SEQ=351899.
67. Mohr, D. C., Duffecy, J., Jin, L., Ludman, E. J., Lewis, A., Begale, M., & McCarthy Jr, M. (2010). Multimodal e-mental health treatment for depression: A feasibility trial. Journal of Medical Internet Research, 12, e48.
68. Mohr, D. C., Lyon, A. R., Lattie, E. G., Reddy, M., & Schueller, S. M. (2017). Accelerating digital mental health research from early design and creation to successful implementation and sustainment. Journal of Medical Internet Research, 19, e153.
69. Moon, D. Y. (2020. 6. 10.) 코로나로 닫힌 장애인 복지관… “발달 장애 국가책임제 도입해라” Yonhap News. Retrieved from https:// www.yna.co.kr/view/AKR20200610098000004.
70. Nature (2020. September 4). Coronavirus research updates: Powerful new evidence links steroid treatment to lower deaths. Nature. Retrieved from https://www.nature.com/articles/d41586-020-00502-w.
71. Odom, S. L., Thompson, J. L., Hedges, S., Boyd, B. A., Dykstra, J. R., Duda, M. A., . . . Bord, A. (2015). Technology-aided interventions and instruction for adolescents with autism spectrum disorder. Journal of Autism and Developmental Disorders, 45, 3805-3819.
72. Oh, M. H. (2020). 새로운 ‘코로나19 안심진료소’ 모델 제시. KHAnews. Retrieved from https://www.khanews.com/news/articleView. html?idxno=203010.
73. Onnela, J. P., & Rauch, S. L. (2016). Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology, 41, 1691-1696.
74. Pai, A. (2014). Wearable device adoption is growing, but engagement still drops after six months. Mobile Health News. Retrieved from https://www.mobihealthnews.com/35697/wearable-device-adoption- is-growing-but-engagement-still-drops-after-six-months.
75. Palmius, N., Tsanas, A., Saunders, K. E. A., Bilderbeck, A. C., Geddes, J. R., Goodwin, G. M., & De Vos, M. (2016). Detecting bipolar depression from geographic location data. IEEE Transactions on Biomedical Engineering, 64, 1761-1771.
76. Park, J. U. (2020. 5. 27). 포항지진트라우마센터, 비대면 화상 심리 상담 시범 운영. Mindpost. Retrieved from http://www.mindpost. or.kr/news/articleView.html?idxno=3779.
77. Rao, P. A., Beidel, D. C., & Murray, M. J. (2008). Social skills interventions for children with Asperger’s syndrome or high-functioning autism: A review and recommendations. Journal of Autism and Developmental Disorders, 38, 353-361.
78. Riva, G., Wiederhold, B. K., Di Lernia, D., Chirico, A., Riva, E. F. M., Mantovani, F., Cipresso, P., & Gaggioli, A. (2019). Virtual reality meets artificial intelligence: The emergence of advanced digital therapeutics and digital biomarkers. Annual Review of Cybertherapy and Telemedicine, 18, 3-7.
79. Rohani, D. A., Faurholt-Jepsen, M., Kessing, L. V., & Bardram, J. E. (2018). Correlations between objective behavioral features collected from mobile and wearable devices and depressive mood symptoms in patients with affective disorders: Systematic review. JMIR mHealth and uHealth, 6, e165.
80. Salk, R. H., Hyde, J. S., & Abramson, L. Y. (2017). Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychological Bulletin, 143, 783- 822.
81. Schlosser, D. A., Campellone, T. R., Truong, B., Etter, K., Vergani, S., Komaiko, K., & Vinogradov, S. (2018). Efficacy of PRIME, a mobile app intervention designed to improve motivation in young people with schizophrenia. Schizophrenia Bulletin, 44, 1010-1020.
82. Shin, S., Yeom, C. W., Shin, C., Shin, J. H., Jeong, J. H., Shin, J. U., & Lee, Y. R. (2016). Activity monitoring using a mHealth device and correlations with psychopathology in patients with chronic schizophrenia. Psychiatry Research, 246, 712-718.
83. Simon, N., McGillivray, L., Roberts, N. P., Barawi, K., Lewis, C. E., & Bisson, J. I. (2019). Acceptability of internet-based cognitive behavioural therapy (i-CBT) for post-traumatic stress disorder (PTSD): A systematic review. European Journal of Psychotraumatology, 10, 1646092.
84. Smith, V., & Sung, A. (2014). Computer Interventions for ASD. In Patel V., Preedy V., Martin C. (Eds.), Comprehensive guide to Autism (pp. 2173-2189). New York, NY: Springer.
85. Song, S. Y. (2020. 2. 11). 신종 코로나 여파로 내원 환자 감소한 병 원들… 40%나 줄기도. 청년의사. Retrieved from https://www.docdocdoc.co.kr/news/articleView.html?idxno=1077045.
86. Spinazze, P., Rykov, Y., Bottle, A., & Car, J. (2019). Digital phenotyping for assessment and prediction of mental health outcomes: A scoping review protocol. BMJ open, 9, e032255.
87. Strobl, M. A., Lipsmeier, F., Demenescu, L. R., Gossens, C., Lindemann, M., & De Vos, M. (2019). Look me in the eye: Evaluating the accuracy of smartphone-based eye tracking for potential application in autism spectrum disorder research. Biomedical Engineering Online, 18, 1-12.
88. Sung, S. J. (2020). 에임메드, 불면증 디지털 치료제 기술 개발 과 제 최종 선정. Digital Times. Retrieved from http://www.dt.co.kr/contents.html?article_no=2020071602109919029005.
89. Torous, J., Kiang, M. V., Lorme, J., & Onnela, J. P. (2016). New tools for new research in psychiatry: A scalable and customizable platform to empower data driven smartphone research. JMIR Mental Health, 3, e16.
90. Torous, J., Onnela, J. P., & Keshavan, M. (2017). New dimensions and new tools to realize the potential of RDoC: Digital phenotyping via smartphones and connected devices. Translational Psychiatry, 7, e1053-e1053.
91. Torous, J., & Roberts, L. W. (2017). Needed innovation in digital health and smartphone applications for mental health: Transparency and trust. JAMA Psychiatry, 74, 437-438.
92. Tron, T., Resheff, Y. S., Bazhmin, M., Peled, A., & Weinshall, D. (2017). Real-time schizophrenia monitoring using wearable motion sensitive devices. In International Conference on Wireless Mobile Communication and Healthcare (pp. 242-249). Springer, Cham.
93. Trouillet, R., & Gana, K. (2008). Age differences in temperament, character and depressive mood: A cross‐sectional study. Clinical Psychology & Psychotherapy, 15, 266-275.
94. Vargas-Cuentas, N. I., Roman-Gonzalez, A., Gilman, R. H., Barrientos, F., Ting, J., Hidalgo, D., Jenson. K., & Zimic, M. (2017). Developing an eye-tracking algorithm as a potential tool for early diagnosis of autism spectrum disorder in children. PloS one, 12, e0188826.
95. Wang, R., Wang, W., DaSilva, A., Huckins, J. F., Kelley, W. M., Heatherton, T. F., & Campbell, A. T. (2018). Tracking depression dynamics in college students using mobile phone and wearable sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2, 1-26.
96. Washington, P., Park, N., Srivastava, P., Voss, C., Kline, A., Varma, M., . . . Wall, D. (2019). Data-driven diagnostics and the potential of mobile artificial intelligence for digital therapeutic phenotyping in computational psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 5, 759-769.
97. Weiss, J. A., Cappadocia, M. C., MacMullin, J. A., Viecili, M., & Lunsky, Y. (2012). The impact of child problem behaviors of children with ASD on parent mental health: The mediating role of acceptance and empowerment. Autism, 16, 261-274.
98. Whalen, C., Liden, L., Ingersoll, B., Dallaire, E., & Liden, S. (2006). Behavioral improvements associated with computer-assisted instruction for children with developmental disabilities. The Journal of Speech and Language Pathology–Applied Behavior Analysis, 1, 11-26.
99. WHO. (2020). COVID-19 significantly impacts health services for noncommunicable diseases. WHO. Retrieved from https://www.who.int/news-room/detail/01-06-2020-covid-19-significantlyimpacts-health-services-for-noncommunicable-diseases.
100. Wong, C., Odom, S. L., Hume, K. A., Cox, A. W., Fettig, A., Kucharczyk, S., . . . Schultz, T. R. (2015). Evidence-based practices for children, youth, and young adults with autism spectrum disorder: A comprehensive review. Journal of Autism and Developmental Disorders, 45, 1951-1966.
101. Xin, J. F., & Leonard, D. A. (2015). Using iPads to teach communication skills of students with autism. Journal of Autism and Developmental Disorders, 45, 4154-4164.
102. Sin, S. M. (2020). 코로나로 연구 지연됐다? ”연구비 이월·연구 기간 연장 가능”. Yonhap News. Retrieved from https://www.yna.co.kr/view/AKR20200416105800017.
103. You, D. K., & Lee, Y. H. (2018). A comparison of mental health service systems in South Korea and US: Role of clinical psychologists in local community. Korean Journal of Clinical Psychology, 37, S24-32.
104. Zulueta, J., Piscitello, A., Rasic, M., Easter, R., Babu, P., Langenecker, S. A., . . . Leow, A. (2018). Predicting mood disturbance severity with mobile phone keystroke metadata: A biaffect digital phenotyping study. Journal of Medical Internet Research, 20, e241.