Korean Clinical Psychology Association
[ Original Article ]
Korean Journal of Clinical Psychology - Vol. 39, No. 4, pp.257-273
ISSN: 1229-0335 (Print) 2733-4538 (Online)
Print publication date 30 Nov 2020
Received 21 May 2020 Revised 06 Aug 2020 Accepted 24 Aug 2020
DOI: https://doi.org/10.15842/kjcp.2020.39.4.001

경계선 성격의 핵심증상 및 우울 증상과의 동반이환: 네트워크 분석

김민선 ; 최현정
1충북대학교 심리학과
Central Symptoms of Borderline Personality and Comorbidity with Depressive Symptoms: A Network Analysis
Minseon Kim ; Hyunjung Choi
1Department of Psychology, Chungbuk National University, Cheongju, Korea

Correspondence to: Hyunjung Choi, Department of Psychology, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Korea; E-mail: hchoi@chungbuk.ac.kr This work is based on the master’s thesis of the first author.

© 2020 Korean Clinical Psychology Association


경계선 성격장애(borderline personality disorder, BPD)는 정서, 인지, 행동 조절 문제와 정체감 및 대인관계 조절에 어려움을 특징으로 보이는 성격장애이다. BPD 증상은 서로 이질적이고 만성적이며 특히 주요우울장애와 공병률이 매우 높다. 이에 본 연구는 네트워크 분석을 사용하여 BPD 만성화에 영향을 미치는 핵심증상, 우울삽화 증상과 동반이환을 유발하는 연계증상 및 증상 예측도를 알아보았다. 네트워크 분석이란 정신장애를 이해하기 위해 새롭게 제안된 접근법으로, 증상 간 연결성을 시각적으로 나타내주는 분석방법이다. 비임상 성인표본 573명을 대상으로 성격평가질문지-경계선척도(PAI-BOR)와 환자건강질문지-9 (PHQ-9)를 사용하여 네트워크 분석을 실시하였다. 분석 결과, BPD 핵심증상은 ‘외로움’, ‘갑작스러운 기분변화’, ‘갑자기 격해지는 감정’ 이었으며, BPD와 우울삽화 증상의 연계증상은 ‘행복한 사람(역)’, ‘자해’, ‘자해충동 및 자살사고’, ‘저조한 기분 및 무망감’으로 나타났다. 이는 BPD에서 핵심증상은 정서조절 문제와 관련되며, 우울삽화와 부정적 정체감 문제를 통해 기분 및 자살 사고를 일으킬 가능성을 시사한다. 이어서 BPD 관련 기존 이론 및 범진단적 개념화를 통해 본 연구 결과에 대한 설명을 시도하고, 심리치료에 시사점을 논의하였다.


Borderline personality disorder (BPD) is characterized by dysregulations in emotion, cognition, and behavior as well as disturbances in identity and interpersonal relationships. BPD shows a heterogeneous and chronic presentation, and a high comorbidity with major depressive disorder. This study used network analysis to identify the central symptoms affecting the chronicity of BPD, the bridge symptoms that may cause comorbid depressive symptoms, and the predictability of each symptom. Network analysis is a novel approach in understanding mental disorders, in that it delineates the core symptoms of a disorder as well as their inter-connectivity. We conducted a network analysis among 573 community samples using the Personality Assessment Inventory-Borderline Features Scale (PAI-BOR) and the Patient Health Questionnaire-9 (PHQ-9). Results indicated that loneliness, mood shift, and intense mood were central symptoms of BPD. Being a happy person (reverse), self-harm behavior, feeling depressed and hopeless, and self-harm and suicidality were symptoms of both BPD and depressive episodes. The findings suggest that the central symptoms of BPD are related to emotion regulation issues, and that depressive episodes are associated with negative identity issues, affecting mood issues and suicidality. We further explained the results by previous theories and transdiagnostic formulations of BPD and discussed their psychotherapeutic implications.


borderline personality disorder, major depressive episode, network analysis, emotion dysregulation, transdiagnostic


경계선 성격장애, 주요우울 삽화, 네트워크 분석, 정서조절문제, 범진단

Author contributions statement

Minseon Kim M.A., was a graduate student at Chungbuk National University, had conceived the research, analyzed data and prepared the manuscript. Hyunjung Choi Ph.D., assistant professor at Chungbuk National University, provided critical feedback and revised the manuscript. All authors approved the final submission.

Supplemental materials

Supplemental materials are available at https://doi.org/10.15842/kjcp.2020.39.4.001.


  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Publication. [https://doi.org/10.1176/appi.books.9780890425596]
  • Beard, C., Millner, A. J., Forgeard, M. J., Fried, E. I., Hsu, K. J., Treadway, M. T., . . . Björgvinsson, T. (2016). Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychological medicine, 46, 3359-3369. [https://doi.org/10.1017/S0033291716002300]
  • Biskin, R. S., & Paris, J. (2013). Comorbidities in borderline personality disorder: Real-world issues and treatment implications. Psychiatric Times, 30, 29.
  • Blanken, T. F., Van Der Zweerde, T., Van Straten, A., Van Someren, E. J., Borsboom, D., & Lancee, J. (2019). Introducing Network Intervention Analysis to investigate sequential, symptom-specific treatment effects: A demonstration in co-occurring insomnia and depression. Psychotherapy and Psychosomatics, 88, 52-54. [https://doi.org/10.1159/000495045]
  • Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91-121. [https://doi.org/10.1146/annurev-clinpsy-050212-185608]
  • Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16, 5-13. [https://doi.org/10.1002/wps.20375]
  • Bos, F. M., Snippe, E., de Vos, S., Hartmann, J. A., Simons, C. J. P., van der Krieke, L., de Jonge, P., & Wichers, M. (2017). Can we jump from cross-sectional to dynamic interpretations of networks? Implications for the network perspective in psychiatry. Psychotherapy and Psychosomatics, 86, 175-177. [https://doi.org/10.1159/000453583]
  • Bringmann, L. F., Lemmens, L. H. J. M., Huibers, M. J. H., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck Depression Inventory-II. Psychological medicine, 45, 747-757. [https://doi.org/10.1017/S0033291714001809]
  • Castro, D., Ferreira, F., Mendes, A. S., & Ferreira, T. B. (2018). Bridges between bipolar and boderline personality disorders: clarifying comorbidity through the analysis of the complex network of connections between symptoms. Psychologist, 1, 30-45. [https://doi.org/10.33525/pprj.v1i1.45]
  • Choi, H. S., Choi, J. H., Park, K. H., Joo, K. J., Ga, H., Ko, H. J., & Kim, S. R. (2007). Standardization of the Korean version of Patient Health Questionnaire-9 as a screening instrument for major depressive disorder. Korean Journal of Family Medicine, 28, 114-119.
  • Clarkin, J. F. (2006). Conceptualization and treatment of personality disorders. Psychotherapy Research, 16, 1-11. [https://doi.org/10.1080/10503300500395889]
  • Conway, C., Hammen, C., & Brennan, P. (2012). A comparison of latent class, latent trait, and factor mixture models of DSM-IV borderline personality disorder criteria in a community setting: Implications for DSM-5. Journal of Personality Disorders, 26, 793- 803. [https://doi.org/10.1521/pedi.2012.26.5.793]
  • Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., & Cramer, A. O. J. (2015). State of the aRt personality research: A tutorial on network analysis of personality data in R. Journal of Research in Personality, 54, 13-29. [https://doi.org/10.1016/j.jrp.2014.07.003]
  • Cushman, P. (1990). Why the self is empty: Toward a historically situated psychology. American Psychologist, 45, 599-611. [https://doi.org/10.1037/0003-066X.45.5.599]
  • Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). Qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48, 1-18. [https://doi.org/10.18637/jss.v048.i04]
  • Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195-212. [https://doi.org/10.3758/s13428-017-0862-1]
  • Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological methods, 23, 617. [https://doi.org/10.1037/met0000167]
  • Feske, U., Kirisci, L., Tarter, R. E., & Pilkonis, P. A. (2007). An application of item response theory to the DSM III-R criteria for borderline personality disorder. Journal of Personality Disorders, 21, 418-433. [https://doi.org/10.1521/pedi.2007.21.4.418]
  • Fried, E. I., & Nesse, R. M. (2014). The impact of individual depressive symptoms on impairment of psychosocial functioning. PLoS One, 9. [https://doi.org/10.1371/journal.pone.0090311]
  • Fried, E. I., Nesse, R. M., Guille, C., & Sen, S. (2015). The differential influence of life stress on individual symptoms of depression. Acta Psychiatrica Scandinavica, 131, 465-471. [https://doi.org/10.1111/acps.12395]
  • Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21, 1129-1164. [https://doi.org/10.1002/spe.4380211102]
  • Gardner, K. J., Archer, J., & Jackson, S. (2012). Does maladaptive coping mediate the relationship between borderline personality traits and reactive and proactive aggression? Aggressive Behavior, 38, 403-413. [https://doi.org/10.1002/ab.21437]
  • Gunderson, J. G., Stout, R. L., Sanislow, C. A., Shea, M. T., McGlashan, T. H., Zanarini, M. C., . . . & Skodol, A. E. (2008). New episodes and new onsets of major depression in borderline and other personality disorders. Journal of Affective Disorders, 111, 40-45. [https://doi.org/10.1016/j.jad.2008.01.026]
  • Gunderson, J. G., Stout, R. L., Shea, M. T., Grilo, C. M., Markowitz, J. C., Morey, L. C., . . . & McGlashan, T. H. (2014). Interactions of borderline personality disorder and mood disorders over ten years. Journal of Clinical Psychiatry, 75, 829. [https://doi.org/10.4088/JCP.13m08972]
  • Haslbeck, J. M. B., & Fried, E. I. (2017). How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets. Psychological Medicine, 47, 2767-2776. [https://doi.org/10.1017/S0033291717001258]
  • Haslbeck, J., & Waldorp, L. J. (2015). mgm: Estimating time-varying mixed graphical models in high-dimensional data. arXiv preprint arXiv:1510.06871.
  • Haslbeck, J. M., & Waldorp, L. J. (2018). How well do network models predict observations? On the importance of predictability in network models. Behavior Research Methods, 50, 853-861. [https://doi.org/10.3758/s13428-017-0910-x]
  • Hayes, S. C., Wilson, K. G., Gifford. E. V., Follere, V. M., & Strosahl, K. (1996). Experiential avoidance and behavioral disorders: A functional dimensional approach to diagnosis and treatment. American Journal of Psychiatry, 64, 1152-1168. [https://doi.org/10.1037/0022-006X.64.6.1152]
  • Horton, M., & Perry, A. E. (2016). Screening for depression in primary care: A Rasch analysis of the PHQ-9. BJPsych Bulletin, 40, 237-243. [https://doi.org/10.1192/pb.bp.114.050294]
  • Jones, P. J., Ma, R., & McNally, R. J. (2019). Bridge centrality: A network approach to understanding comorbidity. Multivariate Behavioral Research, 1-15. [https://doi.org/10.1080/00273171.2019.1614898]
  • Kernberg, O. F. (1985). Borderline conditions and pathological narcissism. Lanham, MD: Rowman & Littlefield.
  • Kim, O. (1997). Loneliness: Concept Analysis. Health & Nursing, 9, 28-37.
  • Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ‐9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16, 606-613. [https://doi.org/10.1046/j.1525-1497.2001.016009606.x]
  • Levinson, C. A., & Rodebaugh, T. L. (2016). Clarifying the prospective relationships between social anxiety and eating disorder symptoms and underlying vulnerabilities. Appetite, 107, 38-46. [https://doi.org/10.1016/j.appet.2016.07.024]
  • Lieb, K., Zanarini, M. C., Schmahl, C., Linehan,M. M., & Bohus, M. (2004). Borderline personality disorder. The Lancet, 364, 453-461. [https://doi.org/10.1016/S0140-6736(04)16770-6]
  • Linehan, M. M. (1993). Cognitive-behavioral treatment of borderline personality disorder. New York, NY: Guilford.
  • Lux, V., & Kendler, K. S. (2010). Deconstructing major depression: a validation study of the DSM-IV symptomatic criteria. Psychological Medicine, 40, 1679-1690. [https://doi.org/10.1017/S0033291709992157]
  • McNally, R. J. (2016). Can network analysis transform psychopathology? Behaviour Research and Therapy, 86, 95-104. [https://doi.org/10.1016/j.brat.2016.06.006]
  • Morey, L. C. (1991). Personality assessment inventory: Professional manual. Odessa, FL: Psychological Assessment Resources. [https://doi.org/10.1037/t03903-000]
  • Paris, J. (2007). The nature of borderline personality disorder: Multiple dimensions multiple symptoms, but one category. Journal of Personality Disorder, 21, 457-473. [https://doi.org/10.1521/pedi.2007.21.5.457]
  • Pazzagli, A., & Monti, M. R. (2000). Dysphoria and aloneness in borderline personality disorder. Psychopathology, 33, 220-226. [https://doi.org/10.1159/000029147]
  • Richetin, J., Preti, E., Costantini, G., & De Panfilis, C. (2017). The centrality of affective instability and identity in Borderline Personality Disorder: Evidence from network analysis. PloS One, 12. [https://doi.org/10.1371/journal.pone.0186695]
  • Salsman, N. L., & Linehan, M. M. (2012). An investigation of the relationships among negative affect, difficulties in emotion regulation, and features of borderline personality disorder. Journal of Psychopathology and Behavioral Assessment, 34, 260-267. [https://doi.org/10.1007/s10862-012-9275-8]
  • Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., & Staiger, P. K. (2017). Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: A systematic review. Clinical Psychology Review, 57, 141-163. doi:10.1016/j.cpr.2017.09.002. [https://doi.org/10.1016/j.cpr.2017.09.002]
  • Soloff, P. H., Lynch, K. G., Kelly, T. M., Malone, K. M., & Mann, J. J. (2000). Characteristics of suicide attempts of patients with major depressive episode and borderline personality disorder: A comparative study. American Journal of Psychiatry, 157, 601-608. [https://doi.org/10.1176/appi.ajp.157.4.601]
  • Hevey, D. (2018). Network analysis: A brief overview and tutorial. Health Psychology and Behavioral Medicine, 6, 301-328. [https://doi.org/10.1080/21642850.2018.1521283]
  • Hong, S. H., & Kim, Y. H. (1998). A validation study of the Borderline Personality Disorder Scale in Korean university students. Korean Journal of Clinical Psychology, 17, 259-271.
  • Hwang, S. T., Jo, H. S., Park, M. J., & Lee, J. Y. (2015). Personality disorders relationship with temperament and character. The Korean Journal of Social and Personality Psychology, 29, 1-13. [https://doi.org/10.21193/kjspp.2015.29.2.001]
  • Southward, M. W., & Cheavens, J. S. (2018). Identifying core deficits in a dimensional model of Borderline Personality Disorder features: A network analysis. Clinical Psychological Science, 6, 685-703. [https://doi.org/10.1177/2167702618769560]
  • Strosahl, K., Chiles, J. A., & Linehan, M. (1992). Prediction of suicide intent in hospitalized parasuicides: Reasons for living, hopelessness, and depression. Comprehensive Psychiatry, 33, 366-373. [https://doi.org/10.1016/0010-440X(92)90057-W]
  • Trull, T. J., Useda, D., Conforti, K., & Doan, B. T. (1997). Borderline personality disorder features in nonclinical young adults: 2. Twoyear outcome. Journal of Abnormal Psychology, 106, 307. [https://doi.org/10.1037/0021-843X.106.2.307]
  • Trull, T. J. (1995). Borderline personality disorder features in nonclinical young adults: 1. Identification and validation. Psychological Assessment, 7, 33. [https://doi.org/10.1037/1040-3590.7.1.33]
  • von Klipstein, P. L. (2015). A Network Model of Comorbidity in Borderline Personality Disorder. (Unpublished master’s thesis). University of Amsterdam, Amsterdam.
  • Woods, W. C., Arizmendi, C., Gates, K. M., Stepp, S. D., Pilkonis, P. A., & Wright, A. G. C. (2020). Personalized models of psychopathology as contextualized dynamic processes: An example from individuals with borderline personality disorder. Journal of Consulting and Clinical Psychology, 88, 240-254. doi:10.1037/ccp0000472. [https://doi.org/10.1037/ccp0000472]
  • Zanarini, M. C., Frankenburg, F. R., Dubo, E. D., Sickel, A. E., Trikha, A., Levin, A., & Reynolds, V. (1998). Axis I comorbidity of borderline personality disorder. American Journal of Psychiatry, 155, 1733-1739. [https://doi.org/10.1176/ajp.155.12.1733]